2,052 research outputs found

    Recording, Documentation, and Information Management for the Conservation of Heritage Places: Guiding Principles

    Get PDF
    Provides guidance on integrating recording, documentation, and information management of territories, sites, groups of buildings, or monuments into the conservation process; evaluating proposals; consulting specialists; and controlling implementation

    Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin film geometry: A Monte-Carlo simulation

    Full text link
    The interfacial profile between coexisting phases of a binary mixture (A,B) in a thin film of thickness D and lateral linear dimensions L depends sensitively on both linear dimensions and on the nature of boundary conditions and statistical ensembles applied. These phenomena generic for systems in confined geometry are demonstrated by Monte-Carlo simulations of the bond fluctuation model of symmetric polymer mixtures. Both the canonical and semi-grand-canonical ensemble are studied. In the canonical ensemble, the interfacial width w increases (from small values which are of the same order as the intrinsic profile) like sqrt{D}, before a crossover to a saturation value w_max (w_max^2 proportional to ln L) sets in. In the semi-grand-canonical ensemble, however, one finds the same widths (w proportional to sqrt{D}) as in the canonical ensemble for not too large L, while for large L the interfacial profile is smeared out over a finite fraction of the film thickness (w proportional to D for D -> infinity). We discuss the implications of these findings for the interpretation of both simulations and experiments.Comment: 42 pages, including 15 PS figures, to appear in JC

    Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density

    Full text link
    By means of extensive Monte Carlo simulations of the bond fluctuation model, we study the effect of adding AB diblock copolymers on the properties of an interface between demixed homopolymer phases. The parameters are chosen such that the homopolymers are strongly segregated, and the whole range of copolymer concentrations in the two phase coexistence region is scanned. We compare the ``mushroom'' regime, in which copolymers are diluted and do not interact with each other, with the ``wet brush'' regime, where copolymers overlap and stretch, but are still swollen by the homopolymers. A ``dry brush'' regime is never entered for our choice of chain lengths. ``Intrinsic'' profiles are calculated using a block analysis method introduced by us in earlier work. We discuss density profiles, orientational profiles and contact number profiles. In general, the features of the profiles are similar at all copolymer concentrations, however, the profiles in the concentrated regime are much broader than in the dilute regime. The results compare well with self-consistent field calculations.Comment: to appear in J. Chem. Phy

    Irrigation as adaptation strategy to climate change—a biophysical and economic appraisal for Swiss maize production

    Get PDF
    The impact of climate change on Swiss maize production is assessed using an approach that integrates a biophysical and an economic model. Simple adaptation options such as shifts in sowing dates and adjustments of production intensity are considered. In addition, irrigation is evaluated as an adaptation strategy. It shows that the impact of climate change on yield levels is small but yield variability increases in rainfed production. Even though the adoption of irrigation leads to higher and less variable maize yields in the future, economic benefits of this adoption decision are expected to be rather small. Thus, no shift from the currently used rainfed system to irrigated production is expected in the future. Moreover, we find that changes in institutional and market conditions rather than changes in climatic conditions will influence the development of the Swiss maize production and the adoption of irrigation in the futur

    Fluctuating Interfaces in Liquid Crystals

    Get PDF
    We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with aspect ratio 15:1, and the fluctuation spectrum of interface positions (the capillary wave spectrum) has been analyzed. In addition, the capillary wave spectrum has been calculated analytically within the Landau-de Gennes theory. The theory predicts that the interfacial fluctuations can be described in terms of a wave vector dependent interfacial tension, which is anisotropic at small wavelengths (stiff director regime) and becomes isotropic at large wavelengths (flexible director regime). After determining the elastic constants in the nematic phase, theory and simulation can be compared quantitatively. We obtain good agreement for the stiff director regime. The crossover to the flexible director regime is expected at wavelengths of the order of several thousand particle diameters, which was not accessible to our simulations

    Effect of long range forces on the interfacial profiles in thin binary polymer films

    Full text link
    We study the effect of surface fields on the interfacial properties of a binary polymer melt confined between two parallel walls. Each wall attracts a different component of the blend by a non-retarded van der Waals potential. An interface which runs parallel to the surfaces is stabilized in the center of the film. Using extensive Monte Carlo simulations we study the interfacial properties as a function of the film thickness, the strength of the surface forces and the lateral size over which the profiles across the film are averaged. We find evidence for capillary wave broadening of the apparent interfacial profiles. However, the apparent interfacial width cannot be described quantitatively by a simple logarithmic dependence on the film thickness. The Monte Carlo simulations reveal that the surface fields give rise to an additional reduction of the intrinsic interfacial width and an increase of the effective interfacial tension upon decreasing the film thickness. These modifications of the intrinsic interfacial properties are confirmed by self-consistent field calculations. Taking account of the thickness dependence of the intrinsic interfacial properties and the capillary wave broadening, we can describe our simulation results quantitatively.Comment: to appear in J.Chem.Phy

    Interfaces in partly compatible polymer mixtures: A Monte Carlo simulation approach

    Full text link
    The structure of polymer coils near interfaces between coexisting phases of symmetrical polymer mixtures (AB) is discussed, as well as the structure of symmetric diblock copolymers of the same chain length N adsorbed at the interface. The problem is studied by Monte Carlo simulations of the bond fluctuation model on the simple cubic lattice, using massively parallel computers (CRAY T3D). While homopolymer coils in the strong segregation limit are oriented parallel to the interface, the diblocks form ``dumbbells'' oriented perpendicular to the interface. However, in the dilute case (``mushroom regime'' rather than ``brush regime''), the diblocks are only weakly stretched. Distribution functions for monomers at the chain ends and in the center of the polymer are obtained, and a comparison to the self consistent field theory is made.Comment: to appear in Physica

    Textile and Film Based Building Envelopes – Lightweight and Adaptive

    Get PDF
    This paper presents recent advances in the field of multilayer textile cladding systems with a focus on the latest findings. Primary topics are the special characteristics of textile materials in building envelopes in relation to thermal insulation, vapour issues and changing weather conditions as well as the acoustic evaluation of such ultralight systems and the ambitious demands of acoustic insulation and spatial acoustics
    corecore